

American Institute of Aeronautics and Astronautics

1

Metrics and Analysis Methods for Evaluation of a Real-Time
Automated Separation Assurance System

Scott Sahlman*
University of California Santa Cruz, Moffett Field, CA, 94035

A system of metrics and analysis plots has been developed in order to evaluate the
effectiveness and accuracy of trajectory prediction and automated conflict prediction and
resolution algorithms. This research is conducted using a real-time air traffic management
system to perform experimental runs using both live and simulated air traffic scenarios. The
resulting data from these runs needs to be analyzed both to evaluate the performance of the
software and to create objective metrics and plots for use in research studies. Specific
analysis methods have been developed to assess data runs based on losses of legal separation
between aircraft, conflict detections, trajectory prediction error, flight amendments, level-
offs, and fuel burn.

I. Introduction
ASA is developing tools and concepts to assist air traffic controllers in ensuring safe and efficient operations
under increasing traffic demand. This work is divided into specialized tasks to focus on addressing specific air

traffic management (ATM) needs. One such task is Separation Assurance (SA) research whose primary goals are to
study automated algorithms for ensuring adequate separation between aircraft and to improve traffic flow through
Air Route Traffic Control Center (ARTCC), or Center, airspace by using efficient, conflict-free flight paths.1 In this
research, the Center TRACON Automation System (CTAS)2-4 is an important ATM tool with capabilities for
automated conflict detection and resolution used as an experimental environment for comparing actual and
simulated air traffic scenarios. The evaluation of the performance of this system under real-time traffic conditions is
critical for proving the effectiveness of automated separation assurance algorithms5 as well as trajectory prediction
algorithms for possible future use in a live air traffic control environment.

A fundamental component of this research1,5,6 is an ongoing effort to design and develop a set of objective
metrics and associated analysis plots used to evaluate the performance of an automated SA system, compare the
performance of an automated SA system against the performance of an actual system using common metrics, and
show how various parameters, events, or trends relate to the performance of an experimental data run. This is
seldom a straightforward matter because data, especially live data, are often noisy, vague, or irregular and may
require approximations, assumptions, or statistical analysis to produce useful results. At the same time, the particular
methods used to define specific metrics may need to be taken into consideration when using or presenting the results
of such analysis. These analysis results serve to support two main objectives: continued development and testing of
the software and production of objective metrics or plots for inclusion in research publications and presentations.
For example, a standard analysis suite can be used for regular regression testing of the research software, or an
analysis routine could be designed to verify that a new feature is working as specified. Research papers or
presentations often require analyses that show that the software is behaving within certain parameters or how the
performance varies when using different data samples, input variables, or software features. These two objectives
are not mutually exclusive, and often the same analysis methods can be used for both. Ultimately the intent is to
support both researchers and developers with the creation of tools to help analyze data inputs, software algorithms,
and run outcomes.

This paper describes the approach to the design and implementation of SA analysis metrics and also
demonstrates some of the metrics currently used in the evaluation of trajectory prediction and automated conflict
detection and resolution algorithms. The next section begins by giving some background on the basic experimental
setup used in this SA research accompanied by an explanation of the general approach used when designing new
analyses. The tools used for creating analyses are then described followed by a brief discussion of the methods used

* Senior Programmer/Analyst, NASA Ames Research Center, Mail Stop 210-217, AIAA Member.

N

Infotech@Aerospace 2011
29 - 31 March 2011, St. Louis, Missouri

AIAA 2011-1406

Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

2

for verification of new analyses. Several examples of metrics and plots created for SA analysis are then detailed.
The paper finishes with some concluding remarks.

II. SA Experiment Background
The types of analysis performed are going to depend on the experiment on which they are based. For this

research, CTAS is used to study various air traffic scenarios usually in Fort Worth Center, known as ZFW Center.
CTAS is a Center-based, real-time ATM system with 4-D (space and time) trajectory prediction and decision
support features such as aircraft trial planning and automated conflict prediction and resolution algorithms.2-5 CTAS
can be used to display, record, and replay data from live air traffic radar feeds, and it supports the ability to simulate
control of aircraft in Center airspace. Because live air traffic data already contain resolutions and amendments made
by real-world controllers, CTAS is used to create simulated air traffic scenarios where the software can assume
control of aircraft and the automation can be allowed to resolve conflicts according to SA algorithms.

All data runs are based on recordings of live air traffic radar data. These recordings are often about three to four
hours in length, but longer runs such as eight hours may also be used. The two main categories of runs are live data
runs and simulation data runs. Live runs, also called shadow runs, use original recordings of live air traffic radar
feeds to create additional archived run data such as 4-D trajectory predictions and conflict detections.

 For simulation runs CTAS is run in a special mode, called “feedback mode,” that allows it to assume control of
an aircraft when certain criteria are met. In feedback mode, a live recording is played back to provide initial traffic
data. Aircraft that meet specific conditions set within CTAS, the primary ones being a minimum altitude and a
minimum amount of track data, are then “taken over” by CTAS and flown based on 4-D trajectory data fed back by
the CTAS flight prediction algorithms. Although aircraft trajectories continue to be recomputed by CTAS every
twelve seconds, only the first trajectory computed when the aircraft is taken over or the first trajectory computed in
response to a flight amendment is used to create the aircraft’s path. This creates a more consistent and realistic flight
path for the aircraft. Once an aircraft has been taken over in feedback mode, it is simulation controlled and the
original, live aircraft data is no longer used.

Simulation runs are further divided into two types: open-loop runs and closed-loop runs. In an open-loop run, the
automated conflict resolution algorithms are deactivated and aircraft are allowed to fly according to their initial
flight plans, specifically those flight plans that are active when the aircraft is taken over. No traffic management
controls are applied to aircraft once they are simulation controlled, and they are allowed to violate aircraft separation
criteria with other aircraft. Open-loop runs are useful as a baseline comparison case showing what needs to be
solved in a given scenario, and the number of resulting losses of separation that are detected provides a metric for
the level of complexity of the traffic. In this analysis a loss of separation is generally considered as a failure to
maintain a separation greater than 5 nautical miles horizontally and 1000 feet vertically.

In closed-loop runs the automatic SA detection and resolution algorithms are activated and implemented by the
CTAS simulation control. Closed-loop runs can be performed using different operational modes such as utilizing
direct flights to downstream fixes (referred to as direct-to routes),4 varying aircraft weight or response time to
amendments, or setting different aircraft separation specifications. Some of these modes are intended to make the
simulated output look more like real traffic data, and other modes are used to demonstrate the effects of different
types of automation in the traffic.

For all the types of runs that are performed, another important distinction in SA research is the time domain for
conflict predictions. There are two main ranges, called strategic and tactical, determined by the predicted time to
first loss for a conflict, though the defined boundaries of these ranges can vary. In this research strategic SA is
generally considered to apply to conflict detections 3 to 8 minutes before first loss of separation, and tactical SA is
considered to apply to cases when detections are 3 minutes or less before first loss (although in Ref. 7, 2 minutes is
used as this cutoff time). A distinction is needed because different rules and solutions apply depending on the time-
to-go before a predicted loss of separation. This research is currently focused mainly on strategic range algorithms
and solutions, although there is an algorithm for computing tactical range solutions known as Tactical Separation-
Assured Flight Environment (TSAFE)8 that is sometimes run in conjunction with strategic range solutions.

III. Analysis Design Approach
When a new type of analysis, such as a new plot, is desired, one of the first considerations is whether or not all

necessary data are available within existing CTAS or external data files. Although CTAS archives an extensive
amount of data from a run, sometimes, new values are needed or existing data need to be enhanced. In these cases a

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

3

software modification must be made to CTAS to produce the necessary data. Other times a particular analysis
computation might require some additional data outside of CTAS to be obtained such as the Base of Aircraft Data
(BADA).9

Once the required data have been identified, another important consideration is whether the new analysis
requirement is a minor enhancement to an existing analysis routine, a modification or addition to an existing
analysis routine, or a new analysis routine entirely. A minor change to an existing analysis routine might be
something as simple as changing the units on an axis, or adding a new bar to a graph or columns to a table and is
generally the fastest and easiest type of change. If an existing analysis routine uses the same source data or performs
similar enough processing as a new analysis requirement, then sometimes the new requirement can be implemented
by reusing an existing analysis routine and adding additional processing, additional source data, additional output, or
some combination thereof. Some examples of this type of change might be adding a new plot using the same source
data, modifying an existing algorithm to produce new results and displaying them on an existing plot, or modifying
an existing algorithm to process new source data to produce a new table of output data. This type of change typically
ranges from easy to moderately difficult depending on how extensive the changes are to an existing analysis routine.
Finally if a new analysis routine is sufficiently different from existing analysis routines, then a new routine will have
to be created. Whenever possible, pieces of existing analysis routines such as functions, algorithms, or plot
formatting will be reused in the new routine. New routines can range anywhere from relatively easy to difficult
depending on the complexity, and could take anywhere from a day to a month to implement.

When either creating or modifying an analysis routine, a couple of guiding principles are often used. The first is
simplicity. The basic ideas and algorithms behind an analysis routine should be easy to describe, even if the actual
algorithms or computations to create the routine are complex. The other is clarity, and this can be more challenging
to achieve. Output from an analysis, such as a plot, should be fairly easy to look at and understand. Related results
might be grouped together or colored similarly while other results may be more separate or use different colorations,
patterns or line styles. Care should be taken when adding more data or results to the same plot, as too much data can
be visually overwhelming. Sometimes the additional data elements can be accommodated by variations in color,
style, size, or location. Other times additional data can be simplified to show just key points such as average values
or starting points or times of specific occurrences. Sometimes the best approach is just to create multiple outputs.
Finally, the colors red and green when used in a plot can imply their own meaning and should used carefully. Green
often has the connotation of being good, safe, or nominal, while red often connotes dangerous, bad or undesirable
results. Ref. 10 discusses some of these types of issues and gives examples of good and bad uses of colors for
visualization purposes.

IV. Analysis Tools
The analysis tool of choice for examples included in this paper is Matlab.11 Matlab offers a variety of plotting

utilities in addition to a multitude of built-in functions to facilitate the rapid prototyping of many types of analysis
while also having a robust programming language to support more complex analysis. Some types of processing are
better done outside of Matlab, or with existing code, and it can support these types of external calls as well. For
example, one shortcoming of Matlab is that it is not efficient at reading in long data files of mixed format. To solve
this issue, additional utilities can be written in C, Perl, Java, etc. to process original data sources either before
running a Matlab analysis or as part of the Matlab analysis.

The CTAS simulation recording is one such file that contains a large amount of data in various formats.
Information is often extracted from it via a parsing utility written in C that produces a structure containing specified
data fields for each aircraft. At other times, a Perl script may be used to extract more targeted data from the
simulation file. Other text files may be processed in Matlab directly or through external scripts. Some CTAS files
are stored in binary format and are accessed using extraction utilities written in C. In other cases there are additional
utilities for accessing data from other sources such as airspace data used by CTAS.

V. Verification of Analysis Results
The primary method of verifying analysis results is often by inspection. Results that are missing, in unexpected

or invalid ranges, or that seem to show incorrect proportions to other data are often indications of an error in the
analysis. Running the same analysis on multiple data sets often reveals unanticipated cases or errors in the analysis
algorithms, and can produce output that can be compared among different runs to check for consistency of results.
Another approach is to print out additional data or plots to show that analysis results within a run are correct or

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

4

consistent, to identify the source of results, or to verify that expected sections of the analysis algorithm are being
utilized. Sometimes recomputing a few sample values manually can verify that a computation algorithm of the
analysis is working correctly. Finally, Matlab itself has excellent built-in debugging tools that allow an analysis
program to be stopped in specific places or under specific conditions to monitor that internal and output values are
being computed in an anticipated manner or check whether algorithm execution is passing through anticipated
sections of code.

VI. Analysis Metrics
Analysis for SA research is required that, first and foremost, can identify cases where adequate separation is lost

between an aircraft pair, known as loss cases, and provide data surrounding this loss to identify various factors that
may have contributed to it. Loss cases are usually studied only for simulation runs, as losses in live data are
extremely rare. In addition, metrics are also desirable for studying conflict detections, trajectory prediction accuracy,
counts of aircraft amendments, frequency of level-offs, and aircraft fuel use. These metrics are used to evaluate
individual runs, compare different simulation runs, or compare simulation runs with and live runs.

A. Loss of Separation
In loss of separation analysis the track data for all aircraft in the simulation are examined and aircraft pairs are

identified in which a loss of legal separation has occurred. The objective is to study these loss cases to determine the
cause of each loss and to identify corrections or improvements to the automation system or software. Although the
track data for aircraft is recorded in approximately 12-second intervals, the actual timing for these recordings can
vary slightly, and different aircraft may be recorded on different intervals. Thus it is not possible to create precise
comparisons of the aircraft using their recorded position and time data. Instead all aircraft positions are linearly
interpolated to a uniform and synchronized 12-second interval. This allows for a direct comparison of aircraft
positions at a synchronized time.

Loss of separation analysis is applied to both open-loop and closed-loop simulation runs. Open-loop runs are
expected to have a large number of losses detected because no conflict resolutions are being applied to the aircraft.
Both the count of losses and the loss pairs themselves can be used as a baseline for comparison with the closed-loop
case. This comparison between open- and closed-loop cases is only approximate, though, because aircraft paths will
vary between the runs and thus the potential conflicts and losses will not be exactly the same. However, within the
confines of the airspace around a single Center, many of the same aircraft pairs can be expected to interact in both
runs, and the comparison is still useful.

When studying losses from CTAS simulation runs, a raw count of losses is not a sufficient metric. Running
CTAS in feedback mode to create a simulation combines live and simulated air traffic because all aircraft must start
off using live data before they can be taken over, and a few aircraft may never satisfy the takeover criteria. This
creates an environment where the simulation is not in control of all the aircraft and live aircraft are neither aware of
the locations of the simulated aircraft nor operating under the same control as the simulated aircraft. Thus it is not
uncommon for losses to occur especially in cases where aircraft are first entering the system, and even with ideal
conflict resolution algorithms, some losses could still occur in the simulated environment. Because of this, CTAS
simulation losses are further categorized to identify critical losses, non-critical losses, and out-of-range losses. These
are referred to as Category 1, 2, and 3 losses respectively.

Category 1 losses are characterized generally by losses that occur inside ZFW Center, where the simulation
controls at least one of the aircraft for a minimum amount of time, there is a minimum amount of track data for both
aircraft, and both aircraft are above an altitude threshold. It also includes any cases that don’t clearly fall into the
subsequent categories. The expectation is that most Category 1 losses should be resolved by the automation. Cases
in Category 2 are typically losses that occur outside ZFW Center that would have been handled by a controller
before entering ZFW space, or “pop-up” cases where one or both aircraft have less than three minutes of track data
or are controlled by the simulation for less than three minutes. Category 3 losses are defined as those below a certain
desired altitude threshold, and are generally of less interest. These Category 3 cases are often due to the problem of
arrival aircraft merging together on approach to the meter fix, and are not handled adequately by the current
automation7. In comparing runs, the Category 1 losses are most important with attention also being placed on
Category 2 losses.

Loss cases are analyzed primarily via two methods. First is a simple list of aircraft pairs, called loss pairs, with
some additional data about the state of each aircraft. Each loss pair is computed at the point of first loss of separation
and listed with the type of each aircraft, the position of each aircraft, the horizontal separation at first loss, the flight
category of each (arrival, departure, overflight, etc.), and the time of the loss. In addition there may be details on

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

5

whether the loss occurred outside the Center, whether there were missing trajectory predictions, whether there was a
common arrival fix (for arrival/arrival pairs only), or whether this conflict was detected in advance. This information
is output to a file in simple text output and serves as a quick-reference of loss data for a run.

The second analysis output for loss cases is a detailed plot showing each loss pair. Figure 1 demonstrates a loss-
pair plot. This plot is based on the aircraft pair and the loss time, as contained in the loss-pairs file, and shows a 10-
minute window before and after the loss time. Instead of using interpolated data, with the one exception of the time
of first loss of separation, the data displayed on the plot are the original, non-interpolated, raw data. This is designed
to show the data used by CTAS while it was running, as well as any data that might be missing around the time of a
loss.

The loss-pair plot consists of two component plots: the upper plot displays horizontal detail and the lower plot
displays vertical detail. Some elements are shared between both plots. The legend shows the two aircraft involved:
aircraft 1 is ABC123 and aircraft 2 is XYZ456 in this case. Additional data following the aircraft ID indicate the
aircraft origin airport, an identification code number, the airplane type, and a code letter indicating onboard
equipment. Most data for each aircraft is color-coded with blue for aircraft 1 and green for aircraft 2. In this case
green is used without misinterpretation because it is established that this is a loss case. It is also used because it
visually complements blue as the second color. Aircraft track data is represented as either X’s or O’s with an over-
size X or O indicating the first track point. Predicted trajectory data is displayed as a series of lines, and is shown for
10 minutes prior to the loss time through 1 minute following the loss time. Trajectory lines often lie close to or on
top of each other, so black dots are plotted on the starting point of each trajectory line to help indicate when
trajectories may be missing. Aircraft intent data (i.e. flight plan and assigned altitude) is indicated with dashed lines.
Simulation control is indicated with an asterisk, either on the plot at the track point where simulation first takes
control, such as aircraft 2, or in the legend in front of the aircraft identifier if the aircraft starts in simulation control,
such as aircraft 1. Finally there are triangles indicating each minute up to 5 minutes prior to the loss time and red
circles to indicate the point of first loss.

Other elements of the two plots are unique to each plot. The upper plot is an X vs. Y plot, while the lower plot is
an altitude vs. time plot. Because of this the triangles and loss point help link points between the two plots. The
upper plot shows flight plan data, and may include multiple flight plans for each aircraft. To help link the track data
with the appropriate flight plan data, the “flown” portions of flight plan data that lie closest to and correspond with
the track data are highlighted in a darker color while the rest of the flight plan lines are left in a lighter color. This
also means that portions of the flight plan either before or after the 20-minute window of the plot are left in a lighter
color. The upper plot also has yellow diamonds in the track data showing where the first conflict detection occurred
(if at all), and shows an outline of the ZFW Center boundary to serve as a location reference. The lower plot shows
changes in altitude assignment, including temporary altitudes, as instantaneous transitions. Altitude assignments are
drawn only in dark lines because they have well-defined beginning and end points, and because the plot shows only
the data in the 20-minute window around the loss. The last detail unique to the lower plot is a series of red tick
marks along the bottom axis indicating times, if any, when conflicts were predicted for this pair.

For this plot, it was decided that it was important to show all trajectory paths in range before the loss and shortly
after it. For an aircraft with 10 full minutes of track data before the loss point, there could be over 50 trajectory
predictions in this range. This means over 50 trajectory lines may be drawn for one aircraft. Usually many will
overlap each other, and the result is that only a few variations will be seen such as in Fig. 1. Sometimes, though, an
aircraft might make a more complicated maneuver and create a series of predictions with differing paths. The
resulting plot might be difficult to interpret because the trajectory lines can become confusing.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

6

Because of the fact that so many trajectory lines do overlap one another, some additional thought was put into
finding a way to show all the different trajectory paths. For a two-dimensional plot, there is no simple way to show
so many potentially overlapping lines, and still include all the other existing elements of the plot. One solution might
have been to create a series of plots sequenced by time to show all trajectory paths and when they were generated,
but this would be a more complex solution and would require additional plots to supplement the loss-pair plot.
Instead a compromise was to mark the beginning of each trajectory line with a black dot. Each new trajectory

Figure 1. Loss-pair plot

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

7

computation starts from the current track position so the start points don’t overlap and create a clear progression of
points as the aircraft flies. The result is that while it is often not possible to identify and isolate a single trajectory
line from start to end in these plots, any gaps in the progression of start points clearly indicate a failure of trajectory
predictions in that region even if surrounding lines are overlapping each other.

The loss-pair plot is useful for displaying a number of data elements pertinent to a loss case in an “at-a-glance”
format that allows certain details to stand out clearly. It can show when a loss occurs far outside ZFW Center, when
and where track or trajectory data are missing, or when trajectories are perhaps being predicted in an inaccurate or
unexpected manner. It also demonstrates the trade-offs and compromises that sometimes need to be made to create
an informative and useful plot. For the example of Fig. 1, the upper, X vs. Y plot shows that both aircraft are
following their assigned flight plan closely, but, in this case, doesn’t provide much more insight on the cause of this
loss of separation. The lower altitude vs. time plot, on the other hand, clearly shows that the loss of separation
occurred following a change of assigned altitude for the second aircraft. Following this altitude amendment, the
conflict was quickly detected as shown by the tick marks on the X-axis, and the trajectory lines suggest that the
aircraft was predicted to descend faster than the actual track data shows. Together, these plots suggest that the cause
of this loss was either that the aircraft descended slower than predicted, or that the automation failed to properly
check the descent path before issuing the change of altitude.

A similar analysis, based on the loss of separation analysis, shows the minimum separation between two
specified aircraft. This minimum separation pair analysis is useful for comparing how a pair of aircraft that resulted
in a loss case in one run, may have been successfully separated in another run. This type of comparison is most often
performed between an open and closed-loop run, or, more commonly, between two different closed-loop runs with
different settings or variations in the separation algorithms, but it could also be used to compare against a live run if
desired. This analysis is generally used only for select cases of special interest. The plot itself is nearly identical to
the loss-pair plot. The main difference is that the reference point is the point of minimum horizontal separation
between the two aircraft. Only the horizontal separation is taken into consideration for this plot as the vertical
separation between aircraft is often much less than the horizontal separation (minimum legal vertical separation can
be as little as 1,000 feet), and usually it is the horizontal separation that is of more interest. The minimum separation
point itself could still represent a loss case, and if so, there are two red circles at the minimum separation point in the
plot just as in the loss-pair plot. Otherwise the circles are colored green.

B. Conflict Detections
Another metric examines predicted conflict detections during the run. The goal of conflict detection analysis is to

help reduce the number of false detections and missed detections, and to ensure that potential loss of separation
cases are detected with enough advance warning to create safe, conflict-free, strategic-range resolutions. One
difficulty with conflict detection data is that a detection for a given aircraft pair may appear sporadically over

several prediction cycles in the archived conflict
data set. This can be due to the sensitivity of the
prediction settings, uncertainty in predicting the
path of an aircraft, or difficulty in computing a
trajectory for an aircraft. Because of this
inconsistency in detections a study was done in
Ref. 6 to examine when the resolution automation
should respond to a predicted conflict. The results
showed that 3 consecutive detections were a
sufficient condition for triggering a resolution
call.

The findings of that study formed the basis for
the plot in Figure 3. In this plot a conflict is
considered “validated” if it is the first of at least
three consecutive detections in successive
prediction cycles. This may or may not include
the initial detection. In addition these counts are
divided into two broad groups. Aircraft pairs
where both are flying level, level/level pairs, are
denoted by blue bars, and pairs where at least one
aircraft is climbing or descending, transitioning
pairs, are indicated by yellow bars. To highlight Figure 2. Validated conflict detection metric

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

8

cases where a resolution may have been ineffective or possibly incorrect, an additional group of tactical range
conflicts that are detected within 30 seconds after a flight amendment are shown in orange bars. Ideally a resolution
amendment should be free of any immediate conflicts so these counts may be cases where an amendment is flawed
or the trajectory may not be modeled adequately. The high count at the 10-minute bar is due to the fact that 10
minutes is the maximum range for detecting conflicts, so this reflects conflicts that may be detected farther out, but
are not reported until the time to loss reaches 10 minutes.

C. Trajectory Prediction Error
Fundamental to the ability to detect conflicts and

compute flight amendments is the algorithm to create
predicted trajectories. Thus a few different methods have
been developed to analyze predicted trajectories in CTAS.
For SA, short-term predictions, those around 5 to 10 minutes
out, are of greatest interest for detecting and resolving
strategic range conflicts. One metric that is commonly used
in SA research is shown in Figures 3, 4, and 5. Although
many aircraft trajectories are usually predicted, in an effort to
keep this analysis simple, a starting track point and the
associated trajectory prediction from that point is selected for
an aircraft. The trajectory is then compared to the aircraft’s
position at some specified time in the future, typically in that
5 to 10 minute range. Because flight amendments may occur
at any time, and would introduce larger errors if compared
with trajectory predictions made before these amendments
were issued, aircraft are filtered to those that have no such
amendments, are generally following their flight plan routes,
and have enough track data to analyze. While Figs. 3-5 show
data from a related set of runs, the number of aircraft
analyzed are different for each run because of the results of
these filter criteria. This analysis can produce plots to show
differences in along-track, cross-track, and altitude
predictions. Results are also grouped by departures and
overflights. Arrivals would be analyzed based on their top of
descent (or ToD) points on final approach to the meter fix,
but due to less intent data, the fact that assigned altitudes for
aircraft on final approach are not filed, and difficulties in
determining the actual ToD point from other level segments
and temporary altitudes near the end of the cruise segment,
arrivals are more difficult and are not currently included. The
plots in Figs. 3-5 show along-track errors for overflight data
at 8 minutes out.

This type of trajectory analysis is performed for both live
and simulation runs. When considering trajectory error for
live data, there are many factors that can influence an
aircraft’s flight path including airplane weight, airline
company protocols, weather, pilot response time, engine
performance, and the pilot’s conformance to the assigned
path. It is expected there should be significant variation
between the predicted and actual flight paths, and this is
reflected in the live data result shown in Figure 3. An aircraft
in a closed-loop simulation run, on the other hand, is flown
based on a single trajectory prediction, and should show
close adherence between the predicted and flown paths, as is
shown by the sharp center peak with little spread in Figure 4.
These two plots demonstrate a difference between simulation
results and live data results. This type of analysis shows that in order for simulation results to more closely resemble

Figure 4. Trajectory prediction error - closed
loop

Figure 5. Trajectory prediction error - closed
loop with uncertainty

Figure 3. Trajectory prediction error - live run

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

9

live results, it is necessary to model the effects of uncertainty in the flight data. Figure 5 shows the same analysis
performed on a different simulation run where some uncertainty has been added in to the aircraft weight and
response time as well as to the weather data. For this run there is more spread in the error results, although there is
still a strong central peak of little to no error. Because one run offers a relatively small data sample size, this analysis
can be combined for multiple data runs to create a much larger data set as is used in Ref. 4.

D. Flight Amendments
One of the goals of SA analysis is to show that the use of automation can simplify the overall management of air

traffic. One way of showing this is to examine the number of amendments issued to aircraft. Each amendment that a
controller needs to issue to an aircraft may require monitoring of air traffic in the vicinity, formally filing the
amendment, contacting the pilot, and waiting for the pilot to accept the amendment. Fewer amendments should
correspond to less work for controllers. Figure 6 shows a histogram of counts of different types of amendments
issued to aircraft over time for a simulation and the corresponding live run. While these two plots show a striking
difference in the overall number of amendments issued between the two runs, these two plots are not measuring
exactly the same quantities. This is largely because there is more detail in the simulation amendment data allowing it
to be clearly categorized based on what the amendment is and what it is in response to. The live data shows only
when route or altitude amendments are made, but not why they were made or what they are in response to. Another
difference is that the simulation in this run was set to use altitude amendments only so it shows no use of temporary
altitudes. The live results may include many amendments made solely for procedural purposes and not in response
to conflicts.7 As a result, this is not an “apples to apples” comparison, but it is still useful in demonstrating a
difference between live data and simulation.

Figure 6 also uses colors to suggest
similarities or differences between quantities.
The lower plot shows a live data run and
includes counts for route changes, assigned
altitudes, and temporary altitudes. These are
all different types of aircraft path changes
and are all represented in different shades of
purple. The upper plot is the corresponding
simulation run, and here the dark and
medium purple colors are used again to
represent the similar quantities of route and
altitude changes respectively, though in this
case, these counts reflect specific conflict
resolutions. This same determination cannot
easily be made for the live data. As
mentioned previously, temporary altitudes
are not used in the simulation runs, so these
are not represented in the results. There are
two additional values, however, in the
simulation results. One is a count of speed
amendments, and these are indicated using a
light blue color. Speed amendments may be

used in live data, but they are not indicated and, thus, cannot be counted. Because speed amendments are also used
as conflict resolutions, but are not a path change, they are colored light blue to suggest a similarity to the other
conflict resolutions colored in purple. The other value is a count of direct-to amendments (denoted as D2 routes).
These are not distinguished in the live data. In the simulation data these direct-to routes are not issued as conflict
resolutions, as are the other types, but instead are issued to improve traffic flow and reduce flying time. To make
these direct-to amendments stand out from the other conflict resolutions, they are colored yellow so that they are a
distinctly different color than the other quantities shown on the plot, and the direct-to bars are positioned on top of
the stack.

The simulation data for amendments also includes delta time information based on the difference between an
aircraft’s original flight path, and its flight path after an amendment. These delta time values allow a measurement
of how well the automation is computing amendment flight paths. In general, a conflict resolution should minimize
flight delays, and may sometimes result in a small time savings if the amendment involves flying direct to a
downstream fix. If the simulation run includes automated direct-to amendments (not restricted to conflict

Figure 6. Amendment counts for live vs. simulation

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

10

resolutions), then these direct-to
amendments should generally reflect
only small time savings as the direct-
to algorithm limits the range of
downstream fixes that can be used.4
Figure 7 shows a plot of these delta
time values expressed as delay time in
30-second bins and plotted vs. the
number of amendments (note that in
this representation, time savings is
plotted as a negative value). This plot
uses the same color scheme as the
closed-loop plot in Figure 6 because
the data is related and the same types
of amendments are plotted (although
in this paper, Figure 6 and Figure 7
were chosen for illustrative purposes
and do not reflect the same data set).
Currently the plot in Figure 7 is
created only for closed-loop
simulation cases. Changes to CTAS
will allow for similar delta time data

to be created for both live and closed-loop runs thus allowing for a direct comparison between them.

E. Level-Offs
Another method that provides a measure of controller workload, as well as flight path optimization, is to

examine aircraft level-offs during aircraft departures or arrivals. Level-offs are commonly used to resolve conflicts
and also as a part of standardized departure or arrival procedures. At the same time each level-off issued requires a
controller action to initiate, and possibly end, and interrupts a climb or descent segment potentially resulting in
greater fuel usage especially for descending aircraft.

In the data, some of these level-offs may be recorded as temporary altitudes, but often, many are not, and some
temporary altitudes may be modified or changed before an aircraft reaches them, so they do not even result in a
corresponding level-off. As a result the only way to measure level-offs is to identify them from the aircraft track
data. In order to do this, specific criteria need to be applied to determine what kind of data constitutes a level-off,
and exactly where it begins and ends.

A few methods were tried, but one that seemed to work best involved examining the track data just three
consecutive points at a time. First the difference between each successive altitude track value is computed to
determine whether the aircraft is climbing, descending or level at each point. If there are no more than two points of
climbs or descents in the set of three and an altitude difference of no more than 200 feet between the first and last
point, the aircraft is considered to be level. Where both conditions are first satisfied is where the segment begins,
and where either is violated, the segment ends. This can allow a slight climb or descent on the ends of a level
segment, but it tends to keep these to a minimum while still retaining relevant data. It also allows the aircraft’s
altitude to vary slightly during a level segment, but this is consistent, especially with live data, where aircraft may
not maintain a constant altitude value throughout level flight segments. An additional constraint is added that a level
segment must be about a minute long. This eliminates very short segments that are not of interest.

Figure 8 shows the result of these conditions applied to arrival data from a live run. Arrival tracks from the
northeast quadrant of the Center are plotted as altitude vs. simulation time with thin lines, and level-offs, after an
initial descent, are highlighted with a thicker line. An additional altitude cutoff of 11,000 feet was applied to remove
portions of tracks in TRACON airspace. Once identified, these level-offs can be counted and their durations
measured for additional analysis. The title of the plot, for example, shows a count of detected level-offs as well as
their average duration. When this same analysis was applied to a closed-loop run for this same data set, only 1 level-
off was detected, and in fact over similar closed-loop runs typically there are either no level-offs or only a few so
simply comparing a plot such as Figure 8 between live and simulation runs again shows a large difference between
live and simulation. Although the plot in Figure 8 shows arrivals, a similar analysis may be done for departures.

Figure 7. Closed-loop delta time histogram

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

11

F. Fuel Burn
A final metric that has

been developed, but is still
undergoing revision, is a
measurement of fuel use.
Fuel consumption has long
been an important concern to
airline companies so it is
useful to show what effect
automation results have on
fuel usage. Unfortunately
this is difficult to accomplish
for a number of reasons. Fuel
used depends on a number of
factors including the
aircraft’s flight phase
(climbing, level or

descending), aircraft mass, speed, altitude, and thrust among others. Aircraft mass, in particular, is not available in
the data set, and must be assumed based on range limits for each aircraft. This means that at best, fuel use may only
be approximated. The problem is further complicated when factoring in the rate of change of aircraft mass as fuel is
burned, and the change in fuel burn rates for different altitudes, speeds, or flight phase.

In order to try to simplify the problem to provide some ballpark estimates of fuel use, an approach was tried
using only overflights in order to eliminate long climbs or descents. Each aircraft’s flight path was restricted to the
portion of the flight through ZFW Center airspace. The mass was assumed to be constant during the flight, and each
aircraft was assumed to travel at a specified constant speed and altitude. The altitude was selected as the assigned
altitude of longest duration during the flight path, and the speed chosen was averaged over the course of the flight
path. Both values were selected from the live data run only. An initial attempt at this analysis used the difference in
times between the Center entry and exit points as the duration of the flight. These values were used along with
BADA9 models providing average aircraft mass, thrust, and fuel burn rates to compute fuel burn for the live run.

For the simulation data, the idea was to compute the fuel usage assuming the same altitude and average speed of
the live data, but using the paths flown in the simulation run. Thus a list of aircraft processed from the live run along
with the associated speed and altitude used was passed as input to the analysis of the simulation run. The aircraft
flight paths were computed for overflight data in the simulation run, and the duration of each flight was computed
using the distance from the simulation run and the speed from the live run. Using these values the fuel use for the
simulation run could then be computed. However, because of differences between each run’s progression, not all
aircraft processed the first time from the live run, will be processed in the simulation run. The aircraft processed in
the simulation run, on the other hand, are restricted to the same aircraft from the live run, so no new aircraft will be
introduced by analyzing the simulation run. To account for this difference, a list of aircraft processed by the
simulation run is passed back as input for a secondary analysis of the live run. This way the results of the live run
are filtered to a common set of aircraft for both the live and simulation runs.

When the results of this analysis were examined, they showed that the simulation run used more fuel, but flew
fewer miles than the live run. Upon closer examination it was noticed that when the average speed was used with the
flight path distance to compute the flight duration in the live data, as was applied to the simulation data, instead of
using the Center entry and exit times, the result was that flight durations were computed to be slightly longer.
Correspondingly, this should result in a higher fuel usage for the live data. Although this approach creates an
artificial flight duration time for the live data, it does treat live and simulation data the same way and provides a
closer comparison between the two. The analysis was modified accordingly and rerun. The results this time showed
that the simulation run had both fewer miles and less fuel consumption, though the difference was small. Figure 9
shows a plot of the overflight tracks across the Center airspace for a live run with a dot indicating the Center entry
point and an X indicating a Center exit point to give an idea what the track data looks like across the Center and
what portion is being used for the fuel analysis. The number of aircraft, miles flown in Center, and corresponding
computed fuel use associated with these aircraft are all indicated in the plot title.

Figure 8. Altitude track data from live run with level-offs highlighted

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

12

Further analysis on these results divided the aircraft by airline and aircraft types, and this showed that some types
of aircraft still had notably increased fuel consumption in the simulation data. By examining the track data for some
specific aircraft, and comparing them between the runs, it was observed that in some cases, an aircraft in the live run
might take a short path near the boundary or fly north or south across the short axis of ZFW Center and then pass
into a neighboring Center and eventually out of data range. In the corresponding simulation run, this same aircraft
would start with the same initial path, but then take a much longer path across the full width of the Center after
receiving an amendment such as a direct-to. While the overall path of the aircraft might be shorter in the simulation
run, the time spent in ZFW and the corresponding fuel use in the Center would be much longer than in the live run
thus distorting the analysis results. For now this analysis remains primarily experimental until a better solution is
found to handle cases of significant path changes such as these. In addition, fuel computations for departure and
arrival aircraft would also be desirable, although these cases are more difficult to compute.

VII. Concluding Remarks
Useful plots and metrics are sometimes the result of specific research or software development needs, but other

times are the result of an iterative process based on refining research goals or evolving software capabilities or
issues. Some can even be the result of interesting or unexpected results discovered as part of another, potentially
unrelated, analysis. This paper has documented several examples of the metrics and types of analysis used in SA
research at NASA to study both live and simulated air traffic scenarios in terms of loss of separation, conflict
detection, trajectory prediction error, flight amendments, level-offs, and fuel burn and the process by which these
metrics and analysis plots were created. Some of these metrics are designed to look at aggregate properties of an
entire run such as the analysis of fuel consumption, and others are designed to focus in on specific details within a
run such as the loss-pair plot. Whether such plots and metrics support a research project directly, such as being
published in a scientific paper or study, or indirectly, such as being used as part of a routine set of software tests,
they are a crucial element of the research process.

Acknowledgments
The author would like to thank Dave McNally of NASA for advice and suggestions for this paper as well as for

discussions on plot design, air traffic management techniques, and aircraft performance characteristics. The author
would also like to thank Neil Chen of NASA for discussion on using BADA data tables as well as supplying a
function to access them in Matlab for fuel burn computations. Thanks are also due to Jinn-Hwei Cheng of the
University of California at Santa Cruz for performing the numerous data runs on which this research is based.

Figure 9. Overflight track data from live run over ZFW Center

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

American Institute of Aeronautics and Astronautics

13

References
1McNally, D., and Gong, C., "Concept and Laboratory Analysis of Trajectory-Based Automation for Separation Assurance,"

AIAA-2006-6600, AIAA Guidance, Navigation and Control Conference and Exhibit, Keystone, CO, 21-24 Aug. 2006.
2Erzberger, H., Davis, T. J., Green, S. M., “Design of Center-TRACON Automation System,” Proceedings of the AGARD

Guidance and Control Panel 56th Symposium on Machine Intelligence in Air Traffic Management, Berlin GDR, 1993.
3Murphy, J., Robinson, J., “Design of a Research Platform for En Route Conflict Detection and Resolution,” Proc. AIAA

Aviation Technology Integration and Operations Conference, AIAA-2007-7803, Belfast, Northern Ireland, 2007.
4Erzberger, H., McNally, D., Foster, M., Chiu, D., Stassart, P., “Direct-to Tool for En Route Controllers,” ATM99: IEEE

Workshop on Advanced Technologies and their Impact on Air Traffic Management in the 21st Century, Capri, Italy, Sept. 26-30,
1999.

5Erzberger, H., “Automated Conflict Resolution for Air Traffic Control”, Proceedings of the 25th International Congress of
the Aeronautical Sciences (ICAS), Hamburg, Germany, 2006.

6McNally, D., Thipphavong, D., “Automated Separation Assurance in the Presence of Uncertainty”, Proceedings of the 26th

International Congress of the Aeronautical Sciences (ICAS), Anchorage, Alaska, USA, 2008.
7McNally, D., Mueller, E., Thipphavong, D., “A Near-Term Concept for Trajectory-Based Operations with Air/Ground Data

Link Communication,” Proceedings of ICAS 2010 27th International Congress of the Aeronautical Sciences, Nice, France, Sept.
19-24, 2010.

8Paielli R., Erzberg, H., Chiu, D., “Tactical Conflict Alerting Aid for Air Traffic Controllers,” AIAA Journal of Guidance,
Control, and Dynamics, Vol. 32, No.1, Jan.-Feb. 2009.

9Nuic, A., “Base of Aircraft Data (BADA) Product Management Document,” EUROCONTROL Experimental Center, EEC
Technical/Scientific Report No. 2009/008, France, March, 2009.

10Arend, L., Logan, A., Havin, G., Using Color in Information Display Graphics, “Designing a Color Graphics Page” [online
user reference], URL: http://colorusage.arc.nasa.gov/graphics_page_design.php [cited 4 February 2010].

11MATLAB, Software Package, Ver. 7.10.0.499 (R2010a), The Mathworks, Natick, MA, 2010.

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Se

pt
em

be
r

3,
 2

01
3

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

1-
14

06

